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Abstract: The "Navigating Mathematical Transitions" project isa 3-year study that examines students
experiences as they move between "traditional” mathematics curricula and those inspired by the NCTM standards
(1989). In this paper, we focus on our method of analysis, particularly the ways that we have conceptualized
"mathematical transitions'. We describe our analytical framework, which consists of four categories that summarize
changes that students' experience during the curricular shift: (1) student achievement, (2) significant differences
students notice and report, (3) changes in disposition towards mathematics, and (4) changes in learning approach.
We give examples and raise issues with each of these categories, in an attempt to explore what aspects of students
experiences our framework does or does not allow usto capture.

Introduction

Therelease of NCTM’s Curriculum and Evaluation Standards (1989) ushered in lively debatein U. S.
mathematics education, and after a decade of curriculum development, assessment studies have begun to examine
the effectiveness of Standards-based materials (e. g., Schoen, Hirsch, & Ziebarth, 1998). But very little attention has
been given to students' experiences as they move between programs of curricula and pedagogy that differ
dramatically in conceptions of thinking, knowing, and doing mathematics. These differences create boundaries that
students must cross to achieve their academic and career goals.

This research report will present emerging analyses from the “Navigating Mathematical Transitions”
project, athree-year study of how high school and college students cope with changes in mathematics curriculum
and teaching. We are studying students as they move between relatively traditional and substantially different
mathematics programs inspired by NCTM Standards (1989) at two junctures: junior high to high school and high
school to college. We have completed two years of data collection on approximately 80 students, and we now report
on our emerging analytical framework and present outlines of specific individual cases of students' experiences and
adjustments. This work follows closely upon our presentation at PME-NA 2000 (Smith et al., 2000) with a stronger
focus on our methodology.

We draw upon both cognitive and situated perspectives on learning and devel opment to conceptualize and
study students' mathematical transitions. We assume that students carry a diverse body of conceptions and feelings
from their prior mathematical experiencesin and out of school. Specifically, we presume that students bring and are
oriented by the following sorts of cognitions: (1) emergent goals for their future; (2) mathematical knowledge (e.g.,
procedural skills and understandings of basic concepts); (3) beliefs and attitudes about mathematics and themselves
aslearners; and (4) strategies and plans for achieving personal goals. However, students’ experiences are not solely
individual, and thinking and learning are not located exclusively inside their heads. What students see as salient, and
what they do to learn mathematics (or not) depends on awide range of social, cultural, and institutional factors.

We distinguish between general developmental changes, such as increased freedom and responsibility for
learning that typically accompany the move from junior high to high school and high school to college, and
mathematical discontinuities and transitions. We use the term mathematical discontinuities to refer to marked
differences between students' prior notions and their current perceptions of how they are expected to think and act
mathematically. Mathematical transitions are students’ responses to those discontinuities: How they consciously
experience and understand the difference(s), how they respond (or not), and how they understand the results of these
responses.

M ethods

This project was designed to study these mathematical transitions in one geographical context (south
central Michigan). Two Standards-based curricula, Connected Mathematics Project (CMP) materials for junior high
(Lappan, Fey, Friel, Fitzgerald, & Phillips, 1995) and the Core-Plus Project materials (CPMP) for high school
(Hirsch, Coxford, Fey, & Schoen, 1996), were developed in Michigan and have been adopted widely throughout the
state. The University of Michigan has implemented Harvard Consortium materials (Hughes-Hallett, Gleason, et d.,



1994) in all calculus and pre-calculus classes, and Michigan State University has retained a more traditional calculus
and pre-calculus curriculum. So the region provides a promising context for studying students' mathematical
transitions. We “follow” high school and college students across 2.5 years of mathematics work in fundamentally
different curricula—assessing their performance, learning of key content, daily experience, beliefs, and goals.

We examine mathematical transitions at two high schools and two universities. At one high school and
university, students move from traditional curricula to those associated with current reforms. At the other high
school and university, the moveis opposite, from reform to more traditional curricula. We are following
approximately 20 volunteers at each site. This 2 x 2 research design is summarized below.

*** |nsert Table 1 about here ***

We combine a systematic program of classroom observation (to assess the enacted curriculum) with a
broad program of assessment of students’ experiences, learning, and personal goals. We assess each student on six
dimensions:. (1) achievement (course grades and grade point averages [GPA]), (2) learning of key ideas, (3) daily
course-related experience, (4) career and educational goals, (5) beliefs about self and mathematics, and (6) strategies
for coping with changes and challenges. Fundamental tools are self-report (journals and e-mail), survey instruments,
and individua interviews (2-3 times each semester). This rich and diverse corpus of datais compiled into individual
case reports describing and summarizing each student's experience.

Results

In our analyses of the data thus far, individual differences have predominated over easily recognized
general patterns, even within a particular site. If we had to summarize our findings in one sentence, our choice might
be, “ Different students react to curricular shifts differently in each school context.” In looking at the data collected
so far, we are in the process of formulating a decision rule to determine which students have or are currently
experiencing a mathematical transition. This decision rule includes four categories that summarize changes students
have experienced during the curricular shift: (1) student achievement, (2) significant differences students notice and
report, (3) changesin disposition towards mathematics, and (4) changesin learning approach. Our challenge has
been to determine what levels of change in these four areas constitute a mathematical transition. At present, our
decision rule states that we will characterize a student as having experienced a mathematical transition if we find
significant change in two or more of these four categories.

In previous papers, we have written more extensively about the results from our first year of data
collection. In this paper, we have chosen to step back from our results and consider our methods a bit more closely.
As mathematical transitions have not been previously studied in the educational literature, we have had to define and
operationalize constructs necessary for our analyses. In this paper, we focus particularly on the way in which have
answered the question, "What is a mathematical transition?' We look closely at the four components of our decision
rule, giving examples and raising issues about what our framework captures and perhaps obscures. We then bring
the four components together and apply our decision rule to a small number of students' cases, and again ask what
our framework allows usto capture and what it perhaps fails to illuminate.

M athematics achievement

In characterizing students mathematical transitions, one obvious place to start would be to look at students
gradesin their mathematics courses. Since achievement is one measure of students' learning, it is reasonable to
consider that this construct should provide some sense of whether a mathematical transition has been experienced.
However, our data suggests two trends of student achievement, one emerging from the college site and one from the
high school site, which question whether (and how) grades should be used as a measure of mathematical transitions.

Thefirst trend that we noticed is at the college sites: students' grades often drop in the move from high
school to college (Star, 2001). For example, at the U-M site, 17 of the 19 studentsin our first year sample had drops
in their overall GPAsin their first semester. At the college sites, it seems likely that adrop in grades may be more
related to general developmental changes than those associated with mathematics. Thus, if adrop in grades were
considered to be an indicator of amathematical transition, it is likely we would falsely identify many college
students as having experienced atransition (e.g., "false positives'). A second trend that we noticed at the high
school sitesisthat thereistypicaly very little change in students' grades as they move from middle to high school
(Jansen & Herbel-Eisenmann, 2001). High performers in middle school tend to remain high performersin high
school, and vice versa. Thus, using achievement as an indicator of mathematical transitions might lead usto fail to



identify many high school studentswho did in fact experience a mathematical transition (e.g., "false negatives").
These two observations suggest that achievement should be approached with caution as an indicator of mathematical
transitions. While we feel that grades do indicate something, achievement data do not portray as clear a picture as
one might initially expect. Further support for caution in the use of achievement has emerged at our high school
sites, where we have found that teachers' grading practices vary from classroom to classroom and often incorporate
features which are only marginally related to student learning of mathematics (e.g., organization and neatness,
Jansen & Herbel-Eisenmann, 2001).

With these two observations in mind, we devised a strategy that enables us to use achievement as an
indicator of potential mathematical transitions but at the same time minimizes the number of false positives and
negatives. This strategy involves comparing students math grades with their overall GPAS, across multiple time
periods, in order to identify students who experienced "significant” change in their math grade as compared to their
overall grade, where "significant" will be defined below. The importance of this type of comparison between math
grade and semester GPA isillustrated by the example of two U-M students, Jack and Teresa. Both Jack and Teresa
did very well in high school, both in math classes (grades of 4.0 for both) and in their overall GPA (4.0 and 3.9,
respectively). And both struggled in their first semester of U-M math, with each earning a 2.3, or adrop of 1.7 and
1.6 points, respectively. However, Jack's overall GPA fell to 2.6, while Teresa's GPA only dropped to 3.5. From
our perspective, Jack represents a case of someone who experienced a general developmental change: Upon coming
to college, al of his grades (including math) suffered amajor drop. In contrast, in Teresa’s case, something unusual
seemed to be happening in math class; she did relatively well in al of her classes except for math. Cases such as
Teresa, where grades indicate that something noteworthy may have been happening around her math class, are
worth further investigation. In cases such as Teresa, there is a mismatch between the pattern of achievement in
overall GPA and in mathematics; this mismatch is the criterion that we will use to indicate which students should be
flagged. More specifically, a"significant” achievement change occurred when the change in students math grade
differed from the change in overall GPA by more than 0.5 grade points (on a 4-point scale). Inthe example above,
Jack's GPA dropped 1.7 points (from 4.0 to 2.3), and his math grade dropped 1.3 points (4.0 to 2.6), so the
difference between these two grade changesis 0.4 points. Teresa's GPA dropped 0.4 points (3.9 to 3.5), while her
math grade dropped 1.7 points (4.0 to 2.3), for a difference of 1.3 points. By our definition, Teresa has experienced
asignificant change in achievement, while Jack has not.

In addition, our extensive conversations about grades have lead to a search for different ways to measure
students' learning of mathematics content. One alternative that we are currently considering makes use of the
problem-solving interviews that were conducted at each site. These interviews give us awindow into the ways that
students come to understand the mathematics that they are studying. At present, our thinking into the waysin which
problem-solving interviews can be analyzed is preliminary.

Significant differences

In order to understand students experiences as they moved between traditional and standards-based
curricula, we asked them in interviews to describe what they noted as different between their previous and their
current mathematics classes. Often the interviewer began with an open prompt like, “What, if anything, do you feel
isdifferent in math classthisyear?’ Some students had a lot to say in response to this question, while others simply
reported, “It'sjust different.” So we often probed with questions that prompted students to consider possible
differences in specific categories, such as the textbooks or the homework problems.

Aswe began our initial analysis of the differences reported by students during the first year of the project,
we found that the differences could be classified based on their origin. Three categories emerged from thisinitial
analysis: teacherg/teaching, curriculum, and site policy. We define Curricular differences as those differences that
had their origin in the written or intended curriculum. For example, differences noted by students in the types of
problems presented in the textbooks were coded as Curricular differences. These differences also included
observations about the difficulty of the content. For example, Kevin, a student at PHS, noted that the mathematics
expected of him in moving from areform to atraditional classroom was more complex, but focused on computation
over connections between representations in mathematics: “ This year is more about multiplying the numbers and
last year was more about inserting them into the equation and getting them to where they like bond between two
ways of doingit." Teachers/Teaching differences represent those differences that had their origin in the teaching or
the teacher’s personal choices. These differences included those reported by students like Pablo at MSU, who
remarked that one of the instructors "just didn’t care” about students or histeaching. As another example, a PHS
student, Bethany, did not like that her 9th grade teacher presented a single method for solving problems; she liked
choosing the way to solve the problem that she preferred. Site Policy differences represent those differences that had



their origin in the decision of the sites' mathematics departments rather than individual teachers. For example, at U-
M, the Mathematics Department, not the curriculum (the Harvard Calculus materials) or the instructors, developed
the course component of group homework. Thus, when students noted this as a difference from high school, it was
categorized as a difference in Site Policy.

Some differences by their nature consisted of complex interactions between categories, and, as such, were
classified in the intersection of two or more of the categories. For example, at PHS, the use of graphing calculators
depended on both the curriculum and the teacher’ s classroom decisions. Asaresult, differencesin the use of the
graphing calculators at PHS were classified as an interaction between Curriculum and Teachers/Teaching.
However, at MSU, the Mathematics Department determined where and how graphing cal culators were used; in
some courses, graphing calculators were not allowed on the exams. Thus, noted differencesin the use of graphing
calculators at MSU were coded as differencesin Site Policy.

Students at every site were able to report at least afew differences that they observed. In fact, participants
may have simply reported differences because they were asked to do so, rather than because those differences were
particularly salient. Thus, our next step was to determine for which students the differences between curricula had
been significant. Differences were deemed to be significant to a particular student if he/she (a) reported them
spontaneously, or (b) repeatedly mentioned them, or (c) gave them particular emphasis or attributed particular
impact to them. Thus, the principal objective here was to require some indication of importance for and/or impact
on the student.

Determining whether or not a student had reported a difference with sufficient emotion or emphasisto be
deemed "significant" proved to be challenging. The emotion with which students communicated differences could
not be easily determined from the transcripts. Often we had to rely on the interviewer's memory of students
responses during the interview, which made reliability analyses, both within and across sites, difficult to conduct. In
addition, since interviewers both had a relationship with the participants and regularly requested information on the
differences they noted, there is a potential for bias in judging the emotion and intensity of students' statements. Due
to these problems, the frequency of reported differences, rather than the emotion accompanying statements, often
determined the significance of the differencesin our analysis.

Disposition towards mathematics

Another factor in our model of mathematical transitions is whether students have experienced achangein
their disposition towards mathematics. The word "disposition™ is used colloquially to refer to an attitude; thus we
are interested in capturing changesin students’ attitudes toward mathematics. More specifically, we use this factor
to refer to students' interest in, attitudes about, beliefs toward, motivation to succeed in, and enjoyment of
mathematics. Data on attitudes has come primarily from interviews; data on beliefs has come from survey data.
Changes in attitude or belief may be accompanied by changes in actions, such as a decision to take more
mathematics, but such changes are neither necessary nor sufficient. At present, our criteriafor “significant” change
in attitudes and beliefs are not clearly and objectively defined but rather are decided through discussion of individual
cases by the project team. In the absence of convincing data, we score the disposition factor as “no change.” Thus,
our current scheme attempts to provide alabel (yes or no) as to whether a student experienced a change in
mathematical disposition. In addition, for those students labeled "yes', we try to characterize the disposition change
as either becoming more positive or more negative.

For example, consider two students’ mathematical dispositions from PHS: Kevin and Stacy. Both of these
students exhibited a change in their attitudes toward their mathematics courses, but in different ways. Kevinwasin
the advanced track of mathematics courses. His disposition became more negative in high school: he found his high
school mathematics classes “more boring” than middle school classes, and he wanted to be invited by the high
school teachers to become moreinvolved in class. In contrast, Stacy, who wasin the lower track of mathematics
courses, had a positive change in her disposition. She expressed a preference for high school mathematics due to
fewer story problems, more equation solving, and a more “direct” approach to the mathematics.

At present, we are grappling with two issues related to how we operationalize disposition toward
mathematics: (1) differences between our conceptualization and that of the literature on “mathematical disposition;”
and (2) the challenges of rigorously assessing students’ beliefs about the discipline of mathematics. With respect to
thisfirst issue, other characterizations of mathematical disposition make more explicit connections to the discipline
of mathematics and also articulate ways in which a mathematical disposition has features that are unique to
mathematics, as opposed to dispositions in other content areas (e.g., Yackel & Cobb, 1996). What would these
aternate conceptualizations of mathematical disposition afford our analysis? A second challenge to our notion of
mathematical disposition is methodological: how do we assess students' dispositions? We are currently working on



the development of a more explicit method for qualitatively assessing students' beliefs about mathematics as
expressed in interview data, and we hope that it can supplement what we have already |earned about disposition
from our existing, less formal methods and from survey data. Clearly, the construct of "mathematical disposition” is
avaluable one in understanding students' transitions; however, we have come to realize that assessing disposition
will require more careful work.

L earning approach

The fourth and final category that plays arolein our decision rule for determining mathematical transitions
is the student's approach to learning mathematics. By learning approach we mean the autonomous actions that a
student undertakes to learn mathematics. Thus a change in learning approach means that the student changes the
kinds of actions they undertake to learn mathematics. The qualifier “autonomous” isincluded to distinguish actions
that a student freely undertakes from those that are more or less mandated by teachers’ decisionsin the classroom.
Students’ approach to learning mathematics is how they organize themselves within the zone of their own
autonomous activity; this zone may include actions undertaken in the mathematics classroom, but it should also
include actions undertaken on the students’ own time (e.g., individual study strategies) and activities that involve
others as resources (e.g., going to see the teacher or professor away from class time, seeking tutorial help, and
studying with peers). Some commonly reported changes in students' learning approach include changesin how the
textbook was used as a course resource; the use of discussions outside class with the teacher, classmates, and friends
as resources; and the sustained use of help-rooms and math help centers, particularly at the college level.

Determining what constitutes a"significant" change in a student's learning approach has been a difficult
decision to make. We have decided that a significant change in this category isindicated by the presence of either
(1) experimentation with new learning strategies, (2) laying aside old learning strategies, or (3) the use of old
strategiesin new ways. Because our insight into students’ approaches to learning is dependent on their self-report,
we look primarily to interviews and the journals for evidence of significant change.

Oneissue that potentially complicates our analysisis the relationship between learning approach and
changes in achievement. For most students (e.g., those who are concerned about earning high grades) autonomous
changes in learning approach tended to be initiated in response to a drop (or a perceived potentialy imminent drop)
in achievement. When a student is dissatisfied with her math grade or is worried that her grade might drop in the
near future, she may attempt new learning strategies in order to remedy the situation. Thus, a change in a student's
learning approach may only be indirectly linked to a change in curriculum, in that the curricular changes resulted in
the grade drop. Other factors share thisindirect link, such as a more demanding teacher or additional extracurricular
activities, and these alternative explanations could be just as responsible for the student's grade drop as the curricular
shift. Asaresult, in some cases, we have struggled to find evidence that students changes in learning approach
came as adirect result of the curricular discontinuities.

A second issue with the learning approach category isin our requirement that changesin actions are
"autonomous" -- that is, freely undertaken by the student rather than mandated by the teacher or by other outside
influences. Particularly at the high school sites, we have found that changes in students' learning approaches are
amost always affected (and in some cases, initiated) by factors other than the student. For example, Stacy, aninth
grade student at PHS, used a strategy in her high school math class that was new to her: reading the textbook before
attempting homework problems. She began using this strategy because her high school textbook provided worked
examples within each section, and she found reading through the worked examples before starting her homework to
be helpful. Stacy did not use this strategy in middle school, most likely because her middle school math textbook
did not provide worked examples. Should this change in learning approach be considered autonomous when she
could not have used this strategy in the past, even if she wanted to, due to the different structures of the texts?

Aswas the case with mathematical disposition, we feel strongly about the importance of the category of
learning approach in understanding students' experiences during a mathematical discontinuity, but we continue to
search for ways to carefully and rigorously determine the "significance" of the changes that studentsin our sample
report.

Illustrative cases

With the preceding description of the four categoriesin our mathematical transition decision rule, we now
briefly describe 4 cases of mathematical transitionsto illustrate some of the diversity in our participants
experiences. We have selected them from the nearly 80 in our corpus, not because they were typical or
representative of experience at any site, but to illustrate different senses or “types’ of transition. We include them to



flesh out our basic claim in greater detail: Mathematical transitions in the context of current curricular reforms take
different forms. Recall that our decision rule states that a student who had "significant" changein at least two of the
four categoriesis considered to have had a mathematical transition. Each of the four students described below meet
this criterion; in fact these four students could be considered to have had a "positive" transition, as each is happier in
his or her current curriculum as compared to the previous one. Y et, despite these surface similarities, these four
students represent very different flavors of mathematical transitions.

Stacy, astudent at PHS, experienced a mathematical transition by virtue of showing significant changein
her disposition toward mathematics and al so by noting significant differences between her previous and current
math class. She showed no change in her achievement in math class, as she was a consistent “A” student in both her
reform (CMP) junior high and more traditional high school mathematics classes. But despite her success, she lacked
confidence in her ability. The elements she valued in her high school math classes reflected this: She preferred
clearly stated procedures for solving problems, tests with content clearly specified in advance, “notes’ to guide work
on those tests, and teachers who kept “order”. The “story problems” in junior high were “harder” because the
solution method was often unclear. Stacy's 9th grade experience in Algebra | increased her interest in mathematics;
she was drawn to the explicit structure of equation solving. Stacy recognized key differences between CMP and
Algebral (e.g., non-routine, contextual problems and greater student ownership for mathematical thinking in the
former). Thus, movement into amore traditiona content improved her disposition toward the subject -- perhaps
because she felt more secure and confident in her new setting.

Mimi, astudent at LHS, experienced a mathematical transition since she noted significant differences and
also changed her approach toward learning math. Aswith Stacy, she showed no change in her achievement, as she
was an above average student in junior high and high school, in math and in other subjects. She found that the
CPMP curriculum required her to think about what problems were asking for, rather than to remember aformula or
general solution. This change was challenging at first but, in her first year of high school, she came to feel that she
could understand math—a state that did not generally follow from prior learning via memorization and practice, as
was the case in junior high. What she felt she needed to do in order to succeed in math changed; before,
memorization and practice allowed her to earn As, but in high school, it became much more important to read and
try to understand what problems (particularly word problems) asked her to do. So her important differences were
closely tied to changesin how she tried to learn and succeed in mathematics. She preferred understanding what she
learned, but it remains unclear whether her disposition toward mathematics has changed significantly in high school.

Although Matt looks identical to Mimi from the standpoint of our decision rule (he noticed significant
differences and also had a change in learning approach), his experience is quite different from hers. Matt came to
MSU from a CPMP high school program and placed into the first semester calculus. He described himself as an
undisciplined high school student, doing only what was required to get good grades. He liked elements of his 3-year
experience with CPM P but found the pace too slow. When his high school teacher slowed down for other students,
he used class time to do his homework. When Matt landed in Calculus | at MSU, hefelt lost in the “foreign
language” of the traditional curriculum and failed the first test. Shaken, he went to see his faculty instructor who
assured Matt that he had been placed in the right class and diagnosed Matt's problemsin terms of some weak content
and poor learning practices. Under hisinstructor's guidance, Matt dramatically changed the way he approached the
work of Calculus and was eventually successful, earning a grade of 3.5 (on a4-point scale). Matt saw differences
between CPMP and MSU Calculus, both mathematically (e.g., contextual vs. purely symbolic problems) and more
generaly (e.g., faster pace in college). His approach to |earning mathematics changed radically in Calculus and, in
fact, led him to expect mastery of the content of his other classesin away that he never had in high school. Matt's
case illustrates that “difficult” transitions can have very positive effects.

Lissie, astudent at U-M, experienced a mathematical transition by virtue of asignificant changein
achievement and in her approach to learning, as well as noticing significant differences. Lissiewasan"A" student
in all of her classesin high school. Although math was not her favorite subject in high school, she enjoyed
considerable success in her math classes and particularly valued the individual attention from her teachers that came
with attending a small school. Upon her arrival at U-M, sheimmediately disliked the reform calculus program. She
had strong, negative feelings about her instructor; she felt the course moved too quickly; and she disliked the writing
and the group work that were integral to the approach. Lissie's grades suffered, yet she was determined to succeed.
She hired atutor and, with his assistance, began devoting a tremendous amount of time and energy to her math class.
The changes Lissie implemented in her learning approach ultimately allowed her grade to stabilize. Lissie
eventually came to feel that she understood Cal culus much more thoroughly and deeply than she did in high schoal,
and she attributed her greater understanding in part to those features of the course that she had initially hated: having
to work in groups and do alot of writing.



Discussion and conclusion

The goa of the work presented in this paper isto understand and describe students' perspectives and
experiences as they move between traditional and reform mathematics curricula. We have hypothesized that such
fundamental shifts in mathematics curricula serve as potential sites for students to experience mathematical
transitions. In this paper, we provide our current answer to the question, what is a mathematical transition? Our
conceptualization depends on four components: achievement in mathematics, significant differences that students
notice and report, disposition towards mathematics, and approach to learning mathematics. While we feel each
component lends strength to our framework, we have also identified challenging issues involved in determining each
component's significance for our students. 1t isour hope that being explicit about the challenges we have faced in
our analysis will inspire some feedback about the framework itself. Arethesethe “right” four factorsto use? Are
there other factors that we should consider? What do these four factors lend us in conceptualizing a mathematical
transition? And what, if anything, does our choice of factors obscure? These are some of the issues we are
grappling with as we continue our data collection and analyses.
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Tablel
Research Design of the Mathematical Transitions Project

Type of Curricular Shift
“Location” of Reform to traditional Traditional to reform
Curricular Shift
Junior high to Prescott High School (PHS) Logan High School (LHS)
high school CMP -> various texts Various texts -> CPMP
High school to Michigan State University (MSU) University of Michigan (U-M)
college Core-Plus -> Thomas & Finney Calculus Various texts -> Harvard Calculus




