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Fundamentally new mathematics curricula serve students well when they provide everyone

with richer and more accessible introductions to a wide range of mathematical content. But new

curricula also serve teachers well when they lead us to examine and reflect upon what and how we

teach. When these curricula enter our working lives and conversations, we are often forced to try to

question exactly what is “new” about them and how this “newness” may affect our students’

learning. To address this issue and, we hope, to support further reflection and discussion, we take a

closer and more careful look at what is “new” in one middle school curriculum's approach to

algebra. The curriculum we examine is the Connected Mathematics Project  [CMP] (Lappan et al.,

1998) (particularly the 8th grade units), but the issue of what is new in algebra is relevant to many

other innovative middle school curricula as well.

Identifying Differences between Older and Newer Conceptions of Algebra

What does it mean for students to develop solid understandings of algebraic ideas and

concepts in middle school? Indeed, what do we mean when we say "algebraic ideas and concepts"?

We have been pursuing these questions for some time, along with middle school, high school, and

district colleagues, many of whom have had extensive experience teaching the 7th and 8th grade

CMP materials. These discussions helped us generate six dimensions that captured much of the

difference between traditional conceptions (and teaching) of algebra and the CMP introduction to

algebra. Eventually, we compiled these dimensions into Table 1. Although students encounter

algebraic concepts throughout the CMP program (grades 6–8), a substantial part of the 8th grade

material addresses algebraic themes and content, so we decided to compare that year's curriculum

with the content of traditional Algebra I.

** Insert Table 1 about here **

We explicitly avoided falling into the trap of calling one side of Table 1 “good” and the

other “bad,” as many current discussions of algebra reform have tended to do. As former teachers,

we know that there were plenty of outstanding curricula and ways of teaching prior to the
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introduction of the NCTM Standards in 1989. More importantly, we believe that broad and general

claims of “good” and “bad” curricula are not helpful because they stop our thinking and

reflection just when it should start. Instead of merely labeling a curriculum or teaching approach as

"good" or "bad", we prefer to ask questions such as, "What about the curriculum is good (and

bad)?", and "How does the curriculum affect student learning?"  To move our own discussion of

algebra curricula in a more productive direction, we developed Table 1 to represent the changing

nature of school algebra. In the balance of the article, we illustrate these changes in relation to

specific features of the CMP curriculum.

Fundamental Objects of Study

First, the mathematical objects we study in algebra have changed. Prior to the publication of

the Standards-inspired curricula, algebra was almost exclusively the study of equations and

symbolic expressions. Work on these objects produced solutions to equations and equivalent

expressions via various manipulations. In fact, if one were to thumb through a traditional Algebra I

textbook, one would find very few pages that do not contain symbolic expressions. The first chapter

of those texts is often entitled “Expressions and Equations.” Instructions to teachers indicate

explicitly that the course is primarily concerned with the development of familiarity and fluency

with symbolic expressions and equations. For example, the following is from the “Foreword to the

Teacher” in a popular textbook series (which the first author used for many years):

The unifying theme is the concept of an expression [emphasis in original].  For
increasingly complex expressions, students do these three things:
1.  Write an expression representing a variable quantity in some real-world situation,
2.  Find the value of the expression when x is known,
3.  Find x when the value of the expression is known.  (Foerster, 1990)

Newer conceptions of algebra present functional relationships as the fundamental object. In

contrast to equations, functional relationships specify how one quantity changes in relation to

changes in a second quantity. They are accessible precursors to the mathematical concept of

function. When variable symbols are introduced in the study of functional relationships, they
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clearly represent true variables:  numbers that vary over some numerical domain. This meaning of

variable is quite different than the “unknown number” meaning that is carried by equations and

their solutions (Usiskin, 1988). In other words, it is often the case that the symbols in equations that

we refer to as “variables” do not vary like “true variables.”  For students, “variables” in

equations are more like “numbers whose values we don’t know yet.”

In CMP and numerous other middle and high school curricula, functional relationships are

presented in contextual problems that describe some realistic or fanciful situation. Often, the

situation itself also contains a table of numerical values of the two quantities, a graph of the

relationship, or an expression symbolizing the relationship.  (See Figure 1 for a typical example of

such a CMP problem.)

** Insert Figure 1 about here **

This emphasis on multiple representations of functional relationships can be seen in the

following excerpt from the publication, Getting to Know the Connected Mathematics Program:

CMP Algebra Goals -- By the End of the 8th Grade in CMP Most Students Should Be
Able to:

• Recognize situations in which important problems and decisions involve relations
among quantitative variables -- one variable changing over time or several
variables changing in response to each other.

• Use numerical tables, graphs, symbolic expressions, and verbal descriptions to
describe and predict the patterns of change in variables.

• Recognize (in various representational forms) the patterns of change associated
with linear, exponential, and quadratic functions.

• Use numeric, graphic, and symbolic strategies to solve common problems
involving linear, exponential, and quadratic functions.  (Lappan et al., 1996)

Typical Problems

One implication of this shift in the fundamental objects of study has been a corresponding

change in what typical problems look like. For some time, there have been essentially two types of

problems in Algebra I: (1) symbolic expressions (or equations) that students were directed to factor,

simplify, multiply, expand, or solve, and (2) word problems. Solutions to word problems typically

involved generating and solving an equation and interpreting the numerical answer in the problem
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context. Though word problems are distributed throughout the Algebra I texts, students spend

much more time with symbolic manipulations.

By contrast, almost all problems in 8th grade CMP materials are word problems. But CMP

word problems differ from Algebra I word problems in several ways. They do not fit into the

common Algebra I problem categories (e.g., age problems, coin problems, consecutive number

problems); they often present situations that are either familiar or experientially real to students; and

most are accompanied by tables, graphs, and/or symbolic expressions. Students are directed to do a

variety of things with the problem, including “explain”, “predict”, “describe”, “sketch”,

“investigate”, and “explore.” Students are asked to generate symbolic expressions and equations,

but along with (and arguably less often than) other representations, especially tables and graphs.

Typical Solution Methods

Since typical problems are different, typical solution methods also differ. In Algebra I

problems where students are expected to simplify, expand, factor, or solve, solution methods involve

completing the correct manipulations in the correct order. Efficiency and fluency are valued

attributes of students’ work with such problems. Once they master the basic procedures, students

are expected to develop shortcuts and recognize special cases. These basic and streamlined

manipulations are what college mathematics professors are referring to when they say, “The rest is

just algebra.”

Typical solution methods to CMP algebra problems are quite different. They involve

working with and interpreting verbal statements and/or the accompanying representations. Often

students are asked to create additional representations for the embedded functional relationship and

to write an explanation for numerical solutions.

 For example, in a typical problem from the Moving Straight Ahead unit - ACE #4, p. 10

(Lappan et al., 1998), students are provided with a table showing the distance that a tour van traveled

while moving at a constant speed (see Figure 2).  In order to complete this problem, students must

construct and interpret both tabular and graphical representations of the given data.  The clarity,
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logic, and thoroughness of students' explanations are valued attributes of the solutions to this

problem and ones like it — a very different list of attributes then the efficiency and fluency of

symbolic manipulation!

** Insert Figure 2 about here **

Role of Practice

The role of skill practice is another dimension in which older and newer conceptions of

algebra differ. In traditional Algebra I curricula, practice plays a very important role in students’

learning of the content. A day’s lesson typically involves the introduction of a new solution

procedure or the modification of an existing procedure. Teachers usually present and explain

worked-out examples for students to observe. Students then learn to use this new material through

practice on a number of short and quite similar problems. Homework assignments provide

additional practice on the problems covered in that day’s lesson. In addition, homework may

include problems from earlier material that gets repeatedly "cycled" for additional practice. Practice

is considered a useful, if not indispensable, way to develop mastery of symbolic procedures. Indeed,

structuring the curriculum around a set of procedures makes it much easier to organize students’

practice.

In newer conceptions of algebra, practice plays a more limited role. CMP problems tend to

be longer and have more parts, which means that students work on fewer problems in the course of

a lesson (both in class and on homework). Also, similarities between problems are less salient. Even

when several problems in a unit present and illustrate the same concept(s), their similarities are less

apparent due to the varied ways in which verbal, graphical, tabular, and symbolic representations are

used. This diversification makes it more difficult to conceive of practice with CMP problems

because they vary, one to another, along so many dimensions. Classifying problems according to

embedded functional relationship (e.g., linear, exponential, or quadratic) falls well short of

specifying what students should do to solve them. On the other hand, CMP students receive a great
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deal of practice asking and answering a set of common mathematical questions, such as "What is

going on this situation," "Does it make sense," and "What is varying in this situation?"

Role of Technology

Changing notions of algebra are also reflected in the role of technology. Calculators are

used and explicitly called for in some (though not all) traditional algebra courses, including Algebra

I. However, their use is usually balanced with paper-and-pencil computation, which is typically

more highly valued. Paper-and-pencil calculation is viewed as crucial to the development of fluency

with symbol manipulation procedures. Calculator use may hamper students’ efforts to achieve

fluency especially when the calculator can produce the solution instantly, with little (or no) work

from the student. For example, calculators that can factor symbolic expressions may not be a

sensible tool for students in a lesson focused on mastery of factoring procedures. Similarly, if

students are expected to graph a linear equation by hand, graphing calculators that can generate

such the graph instantly from the equation may not be appropriate. In Algebra I, calculators are

generally valued for computing numerical values, such as products, sums, quotients, powers, and

square roots, so that students can concentrate on other aspects of the problem.

A much wider use of technology is encouraged with CMP materials. The curriculum makes

two quite strong commitments to technology:

(1) Students will have access to calculators at all times... In the 7th and 8th Grades we
assume that students will have graphing calculators with table and statistical-display
capability;  and, (2) computer software will be provided with the curriculum that
students will be able to use in tandem with the curriculum.  (Lappan et. al., 1996, p.
38)

Technology is embedded in and used throughout the curriculum. Calculators and computers are

used both in computation and in creating and manipulating representations. On many problems,

students are asked to use their calculators to make tables and/or construct graphs. CMP problems

then ask students to “explain”, “interpret”, “predict”, and “compare” these representations.
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For example, in a typical problem from the Moving Straight Ahead unit - ACE #4, p. 25

(Lappan et. al., 1998), students are given a table of values showing the time in hours and the

distance in miles for one day’s travel of a student’s bike trip (see Figure 3). The problem asks

students to generate a symbolic equation from the table of values (ostensibly by hand, but perhaps

enterprising students could use the technology) and then to sketch a graph of the equation (using

the calculator). The remaining parts of the problem ask students to answer various questions about

the symbolic, graphical, or tabular representations. This problem is typical of CMP in that students

are not instructed whether or not to use the technology. It is expected and assumed that technology

will be used whenever a student feels that it might be useful in thinking about or completing a

problem.

** Insert Figure 3 about here **

Elements in Typical Lessons

Finally, Algebra I lessons typically follow a fixed sequence of activities: Review the

homework, present the new content, provide time for practicing the new material and perhaps some

additional time for students to start their homework. Indeed, dividing the curriculum into small

packages of new content—typically one new solution procedure or manipulation per lesson—

generates its structure and sequence. This instructional format is closely related to the phases of

Direct Instruction: (a) Introduction and review; (b) presentation; (c) guided practice; and (d)

independent practice (Rosenshine, 1979). Direct instruction is a highly teacher-centered form of

instruction and is an effective strategy for teaching mathematical procedures (Eggen and Kauchak,

1997).

In comparison, it is more difficult to characterize typical CMP lessons. “Investigations,”

which typically take more than one day to complete, are the smallest unit of curricular organization.

Investigations are generally structured into three main phases:  launch, explore, and summarize. In

the “launch” phase, a problem context is clarified and established and work expectations are

communicated. In the “explore” phase, students work to solve problem(s). In the “summarize”
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phase, students look for connections, patterns, and relationships in their own thinking and the

mathematical content. Within each of these phases, however, daily lessons can be structured in quite

different ways. Each phase can exhibit a mix of teacher presentation, small group (2-5 students)

work, and whole class discussion. This potential mix of instructional formats means that the content

and sequence of activities in consecutive days’ lessons can be quite different. This form of

instruction appears considerably more student-centered. Through exploration, analysis, and

discussion of problems and solutions with the guidance of a supportive teacher, students can gain

understanding of mathematical concepts.

Conclusions

Our efforts to identify key differences between older and newer conceptions of algebra was

motivated by our desire to adequately assess students’ understanding of algebra in the 8th grade.

We feel that the six dimensions outlined above are a worthy (if incomplete) step toward that goal. In

particular, we think Table 1 provides a much more productive basis for discussions and evaluations

of algebra curricula than “new” vs. “old,” “good” vs. “bad,” or even  “reform” vs.

“traditional.” Though we have illustrated the dimensions in comparing the CMP algebra

curriculum with the content of Algebra I, Table 1 is more broadly applicable to other curricula that

introduce students to algebra in middle and high school. Simply asking the questions associated

with each of the dimensions, e.g., "what are the fundamental objects of study?," can be very useful,

irrespective of the particular algebra curriculum in question.

But we also recognize that Table 1 lists features that we noticed when we examined and

compared different introductions to algebra. Our experience with Algebra I and with newer

approaches such as CMP, both as students and as teachers, has sensitized us to these differences.

Given the current heated debates about algebra, many parents, teachers, and college professors are

also cognizant of these same differences. But what about our students? They come to these

curricula with much less experience of algebra but with expectations about the structure of daily

lessons, the role of practice, the nature of an "answer," and other issues raised in Table 1. Moreover,
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they may find themselves moving between equation-based and functional relations-based algebra

curricula from middle school to high school to college. What features do they see as different, and

how they adjust to changes when they occur?  Does the change in emphasis from equations and

unknowns to functional relationships and variables register?  Is the move into (or away from) the

emphasis on multiple representations significant?  Do students think about the change from daily

lessons with regular structure to those that are part of longer explorations?  These are some of the

questions we want to address as we continue to explore what really is “new” in new algebra

curricula.
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Table 1
Some key dimensions of differences between traditional Algebra I and 8th grade CMP

Algebra I 8th grade CMP
The fundamental objects in the curriculum

Equations &  symbolic expressions Functional relationships represented
in tables, graphs, and equations

Typical problems in the curriculum

“Solve,” “factor,” “multiply,” symbolic
expressions or verbal statements with

request to find a numerical
value (word problems)

Verbal statements with tables, graphs,
or symbolic expressions with

request to find values and describe,
explain, predict, etc.

Typical solution methods

Complete the correct steps in symbolic
procedures in the correct order

Relate verbal statements to tables, graphs,  or
equations; Compute or manipulate that

representation; Interpret the results verbally
The role of practice

Significant practice on particular
problem types (in class and homework)

Similarities between problems are  less salient;
extended work on fewer,  more open
problems (in class and homework)

The role for technology for representing and calculating

Used in balance with pencil & paper
computation, which is more highly valued

Supports students’ work on most all problems

Elements in a typical lesson

Review homework, present new content,
provide time for work  on next assignment

More variation across lessons; Some mix of
teacher presentation, small group work, and

whole group discussion



Star, Herbel-Eisenmann, & Smith p. 12

Figure 1
Moving Straight Ahead, Investigation 4.3, p. 57
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Figure 2
Moving Straight Ahead, ACE #4-5, p. 10
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Figure 3
Moving Straight Ahead, ACE #4, p. 25


